Pedestrian Smartphone-Based Indoor Navigation
Using Ultra Portable Sensory Equipment

Intergeo 2010 – Geodätische Woche

Dipl. Ing. Christian Lukianto

Department Geomatics
HafenCity University Hamburg

7. October 2010
Teaser

Car Navigation

Unknown city, last few blocks to go, suddenly the GPS signal is lost. How do I still get there on time?

Large Plant

How do I find Mr. Smith’s office E 3.401 in building 42?

Unfamiliar Underground Car Park

Dropped car off in a hurry. How do I find it again?

How to accomplish all this using just a single device?
Teaser

Car Navigation

Unknown city, last few blocks to go, suddenly the GPS signal is lost. How do I still get there on time?

Large Plant

How do I find Mr. Smith’s office E 3.401 in building 42?

Unfamiliar Underground Car Park

Dropped car off in a hurry. How do I find it again?

How to accomplish all this using just a single device?
Teaser

Car Navigation

Unknown city, last few blocks to go, suddenly the GPS signal is lost. How do I still get there on time?

Large Plant

How do I find Mr. Smith’s office E 3.401 in building 42?

Unfamiliar Underground Car Park

Dropped car off in a hurry. How do I find it again?

How to accomplish all this using just a single device?
Teaser

Car Navigation

Unknown city, last few blocks to go, suddenly the GPS signal is lost. How do I still get there on time?

Large Plant

How do I find Mr. Smith’s office E 3.401 in building 42?

Unfamiliar Underground Car Park

Dropped car off in a hurry. How do I find it again?

How to accomplish all this using just a single device?
Agenda

- **Motivation**
- **System Concept**
- **Hardware**
- **Approach**
- **Conclusion & Outlook**
Motivation

- Aim: low-cost, highly portable indoor navigation system
- Independent of dedicated infrastructure
- Pre-existing analyses based on MTi-G by Xsens
 - INS/GPS navigation
 - 'low-cost'

Results

- By itself good, but
 - 'Expensive', bulky, inaccurate / Unsuitable for algorithm dev.
System Concept

- **Inertial Navigation System**
 - baro
 - imu
 - Strapdown Algorithm

- **Geo Server**
 - Geo Data GIS

- **Smartphone**
 - GPS Receiver
 - WLAN Receiver
 - BT Receiver
 - IRDA Receiver
 - Sensor Fusion Algorithms
 - Camera
 - USB Port
 - Navigation Mapping Routing
 - Visualization
Smartphone

- Ultra portable
- Fitted with many sensors and communication interfaces
- Highly integrated hardware
- Powerful CPU
- No 'additional' device required

Nokia N900

- Linux
- Low-level access to sensors and data
- High-level programming languages
Custom INS Hardware

Smartphone (yet) lacks gyros → custom hardware

- Inertial navigation system
- Highly integrated circuits (MEMS) → small footprint
- High-performance digital signal processor
- Interfacing with smartphone (platform independent)
Approach

Part I (Custom Hardware)

- Basic principle: INS continuously provides position and orientation estimates
- Supported by baro sensor (vertical channel) and GPS fix (if available)
- Core: Strapdown Algorithm, KF for GPS/INS fusion

Part II (On Smartphone)

- Basic principle: There is always some available information
- Evaluation / Weighting
- Ranking / Selection
- Sensor Fusion Algorithms (KF, PF, GA, ANN)
- Support for INS
Conclusion

- Ultra portable pedestrian (indoor) navigation system
- Independent of (dedicated) infrastructure
- Independent of additional external hardware (step counter, antennae, etc.)
- Independent of utilized platform (key component (INS) designed removable)
Outlook

Potential uses

- Indoor location-based services
- Guide inside (public) building
- ...

Idea: Synchronization of device with 'smart' point of information at points of entrance

- Shopping Malls
- Trade / science fairs
- Museums
- (Public) buildings (town halls, large plants)
- ...
The End

www.geomatik-hamburg.de/digitalcity

Thank you for your kind attention!