Atmospheric data for geodetic applications

Christof Lorenz, Harald Kunstmann

Institute for Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen
Atmospheric data for geodetic applications

- Troposphere has a significant impact on GPS or satellite altimetry measurements.
- Short-time mass variations in the atmosphere influence the Earth’s gravity field.
- Changes in the Earth’s rotation vector and geocenter due to atmospheric variations.
- Evaluation of e.g. space bourne observations.
- Good knowledge about the atmospheric impact on measurements improves the quality of the satellite observations.
Atmospheric data for geodetic applications

- Troposphere has a significant impact on GPS or satellite altimetry measurements
- Short-time mass variations in the atmosphere influence the Earth’s gravity field
- Changes in the Earth’s rotation vector and geocenter due to atmospheric variations
- Evaluation of e.g. space bourne observations
- Good knowledge about the atmospheric impact on measurements improves the quality of the satellite observations
Atmospheric data for geodetic applications

- Troposphere has a significant impact on GPS or satellite altimetry measurements

- Short-time mass variations in the atmosphere influence the Earth’s gravity field

- Changes in the Earth’s rotation vector and geocenter due to atmospheric variations

- Evaluation of e.g. space bourne observations

- Good knowledge about the atmospheric impact on measurements improves the quality of the satellite observations
Atmospheric data for geodetic applications

- Troposphere has a significant impact on GPS or satellite altimetry measurements
- Short-time mass variations in the atmosphere influence the Earth’s gravity field
- Changes in the Earth’s rotation vector and geocenter due to atmospheric variations
- Evaluation of e.g. space bourne observations
- Good knowledge about the atmospheric impact on measurements improves the quality of the satellite observations
Atmospheric data for geodetic applications

- Troposphere has a significant impact on GPS or satellite altimetry measurements
- Short-time mass variations in the atmosphere influence the Earth’s gravity field
- Changes in the Earth’s rotation vector and geocenter due to atmospheric variations
- Evaluation of e.g. space borne observations
- Good knowledge about the atmospheric impact on measurements improves the quality of the satellite observations
Atmospheric data for geodetic applications

- Troposphere has a significant impact on GPS or satellite altimetry measurements
- Short-time mass variations in the atmosphere influence the Earth’s gravity field
- Changes in the Earth’s rotation vector and geocenter due to atmospheric variations
- Evaluation of e.g. space bourne observations
- Good knowledge about the atmospheric impact on measurements improves the quality of the satellite observations
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere
- Numerical model for the time evolution of atmospheric processes
- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations
- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)
- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)

KIT
Karlsruhe Institute of Technology
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere
- Numerical model for the time evolution of atmospheric processes
- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations
- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)
- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)

KIT
Karlsruhe Institute of Technology
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere

- Numerical model for the time evolution of atmospheric processes

- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations

- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)

- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere

- Numerical model for the time evolution of atmospheric processes

- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations

- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)

- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)

2011-09-28
Christof Lorenz, email: christof.lorenz@kit.edu
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere
- Numerical model for the time evolution of atmospheric processes
- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations
- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)
- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere
- Numerical model for the time evolution of atmospheric processes
- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations
- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)
- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)

Christof Lorenz, email: christof.lorenz@kit.edu
Global atmospheric reanalysis models

- Use of global atmospheric reanalysis models to analyze the main processes and dynamics in the atmosphere

- Numerical model for the time evolution of atmospheric processes

- Assimilation of various observations (satellite, radiosondes, terrestrial) to obtain an estimate of the atmosphere which is consistent with both the model and the observations

- Huge computational effort (for ERA-Interim: between 10^6 and 10^7 observations per day)

- Used for many scientific applications (input data for numerical weather prediction, atmospheric downscaling, investigation of atmospheric processes, ...)

Validation is mandatory due to model character!
Parameters of the reanalyses

<table>
<thead>
<tr>
<th>Reanalysis</th>
<th>Institution</th>
<th>Available time-period</th>
<th>Horizontal Resolution</th>
<th>Vertical levels</th>
<th>Top level</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA-Interim</td>
<td>ECMWF</td>
<td>1979 - present</td>
<td>T255 (≈ 78 km)</td>
<td>60</td>
<td>0.1 hPa</td>
<td>6 h, 1 d, 1 m</td>
</tr>
<tr>
<td>MERRA</td>
<td>NASA</td>
<td>1979 - present</td>
<td>1/2° × 2/3°</td>
<td>72</td>
<td>0.01 hPa</td>
<td>6 h, 1 d, 1 m</td>
</tr>
<tr>
<td>CFSR</td>
<td>NCEP</td>
<td>1979 - present</td>
<td>T382 (≈ 38 km)</td>
<td>64</td>
<td>0.26 hPa</td>
<td>1 h, 6 h, 1 m</td>
</tr>
</tbody>
</table>
Validation methods

1. Validation against observations (GPCC, GPCP, CRU, ...)
2. Analysis of the closure of modelled water budgets
 - Terrestrial water balance
 \[
 \frac{dS}{dt} = P - E - R
 \]
 - Atmospheric-terrestrial water balance
 \[
 \frac{dW}{dt} = E - P - \nabla \cdot Q
 \]
 - Continental-oceanic water balance
 \[
 (P - E)_{\text{land}} \approx -(P - E)_{\text{ocean}}
 \]
 - Long-term budgets (⇒ negligence of the tendency terms)
Validation methods

1 Validation against observations (GPCC, GPCP, CRU, ...)

2 Analysis of the closure of modelled water budgets
 - Terrestrial water balance
 \[\frac{dS}{dt} = P - E - R \]
 - Atmospheric-terrestrial water balance
 \[\frac{dW}{dt} = E - P - \nabla \cdot \vec{Q} \]
 - Continental-oceanic water balance
 \[(P - E)_{\text{land}} \approx -(P - E)_{\text{ocean}}\]
 - Long-term budgets (\(\Rightarrow\) negligence of the tendency terms)
Validation methods

1. **Validation against observations (GPCC, GPCP, CRU, ...)**

2. **Analysis of the closure of modelled water budgets**
 - Terrestrial water balance
 \[
 \frac{dS}{dt} = P - E - R
 \]
 - Atmospheric-terrestrial water balance
 \[
 \frac{dW}{dt} = E - P - \nabla \cdot \vec{Q}
 \]
 - Continental-oceanic water balance
 \[
 (\bar{P} - \bar{E})_{\text{land}} \approx - (\bar{P} - \bar{E})_{\text{ocean}}
 \]
 - Long-term budgets \(\Rightarrow\) negligence of the tendancy terms
Validation methods

1. Validation against observations (GPCC, GPCP, CRU, ...)

2. Analysis of the closure of modelled water budgets
 - Terrestrial water balance
 \[\frac{dS}{dt} = P - E - R \]
 - Atmospheric-terrestrial water balance
 \[\frac{dW}{dt} = E - P - \nabla \cdot \mathbf{Q} \]
 - Continental-oceanic water balance
 \[(\bar{P} - \bar{E})_{\text{land}} \approx - (\bar{P} - \bar{E})_{\text{ocean}} \]
 - Long-term budgets (⇒ negligence of the tendancy terms)
Validation methods

1. Validation against observations (GPCC, GPCP, CRU, ...)

2. Analysis of the closure of modelled water budgets
 - Terrestrial water balance
 \[
 \frac{dS}{dt} = P - E - R
 \]
 - Atmospheric-terrestrial water balance
 \[
 \frac{dW}{dt} = E - P - \nabla \cdot \mathbf{Q}
 \]
 - Continental-oceanic water balance
 \[
 (\bar{P} - \bar{E})_{\text{land}} \approx - (\bar{P} - \bar{E})_{\text{ocean}}
 \]
 - Long-term budgets (⇒ negligence of the tendancy terms)
Validation methods

1. Validation against observations (GPCC, GPCP, CRU, ...)

2. Analysis of the closure of modelled water budgets
 - Terrestrial water balance
 \[
 \frac{dS}{dt} = P - E - R
 \]
 - Atmospheric-terrestrial water balance
 \[
 \frac{dW}{dt} = E - P - \nabla \cdot \mathbf{Q}
 \]
 - Continental-oceanic water balance
 \[
 (\bar{P} - \bar{E})_{\text{land}} \approx - (\bar{P} - \bar{E})_{\text{ocean}}
 \]
 - Long-term budgets (⇒ negligence of the tendency terms)
Validation methods

1. Validation against observations (GPCC, GPCP, CRU, ...)
2. Analysis of the closure of modelled water budgets
 - Terrestrial water balance
 \[\frac{dS}{dt} = P - E - R \]
 - Atmospheric-terrestrial water balance
 \[\frac{dW}{dt} = E - P - \vec{\nabla} \cdot \vec{Q} \]
 - Continental-oceanic water balance
 \[(\bar{P} - \bar{E})_{\text{land}} \approx -(\bar{P} - \bar{E})_{\text{ocean}} \]
 - Long-term budgets (⇒ negligence of the tendancy terms)
Distribution of gauges in the precipitation observations

a) GPCC, 1989
b) GPCC, 2006
c) CPC, 1989
d) CPC, 2006

[gauges/gridcell]
Evolution of the number of gauges per continent

<table>
<thead>
<tr>
<th>Continent</th>
<th>CPC Jan 1989</th>
<th>CPC Dec 2006</th>
<th>CPC Jan 1989</th>
<th>CPC Dec 2006</th>
<th>Area [km²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>10066</td>
<td>9609</td>
<td>6703</td>
<td>745</td>
<td>19,388,969</td>
</tr>
<tr>
<td>South America</td>
<td>6093</td>
<td>1314</td>
<td>4267</td>
<td>390</td>
<td>17,797,363</td>
</tr>
<tr>
<td>Europe</td>
<td>1050</td>
<td>1236</td>
<td>9649</td>
<td>4481</td>
<td>5,764,224</td>
</tr>
<tr>
<td>Africa</td>
<td>419</td>
<td>467</td>
<td>3380</td>
<td>479</td>
<td>30,046,428</td>
</tr>
<tr>
<td>Asia</td>
<td>1887</td>
<td>1275</td>
<td>2509</td>
<td>1315</td>
<td>37,391,906</td>
</tr>
<tr>
<td>Australia</td>
<td>5854</td>
<td>5534</td>
<td>5407</td>
<td>401</td>
<td>7,721,577</td>
</tr>
</tbody>
</table>
Observed and modeled precipitation

Difference in the annual mean precipitation with respect to GPCC

- a) CRU − GPCC
- b) CPC − GPCC
- c) ECMWF − GPCC
- d) MERRA − GPCC
- e) CFSR − GPCC
Observed and modeled precipitation

Relative precipitation with respect to GPCC in units of [mm/day].
Variability of models and observations

a) Obs, Prec
b) Obs, T

c) Reana, Prec
d) Reana, T

[mm/day]

[°C]
Long-term mean water cycle components

Estimates are given in units of $[10^{15} \text{ kg/year}]$

<table>
<thead>
<tr>
<th></th>
<th>ERA Interim</th>
<th>MERRA</th>
<th>CFSR</th>
<th>Trenberth, 2007</th>
<th>Oki, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{land}</td>
<td>120.3</td>
<td>112.9</td>
<td>126.7</td>
<td>113</td>
<td>111</td>
</tr>
<tr>
<td>E_{land}</td>
<td>83.5</td>
<td>85.1</td>
<td>73.3</td>
<td>73</td>
<td>65.5</td>
</tr>
<tr>
<td>P_{ocean}</td>
<td>415.7</td>
<td>383.8</td>
<td>471.6</td>
<td>373</td>
<td>436.5</td>
</tr>
<tr>
<td>E_{ocean}</td>
<td>451.1</td>
<td>413.0</td>
<td>478.9</td>
<td>413</td>
<td>436.5</td>
</tr>
<tr>
<td>R</td>
<td>44.9</td>
<td>28.2</td>
<td>37.7</td>
<td>40</td>
<td>45.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ERA Interim</th>
<th>MERRA</th>
<th>CFSR</th>
<th>Trenberth, 2007</th>
<th>Oki, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(P - E)_{\text{land}}$</td>
<td>36.6</td>
<td>28.4</td>
<td>53.0</td>
<td>40</td>
<td>45.5</td>
</tr>
<tr>
<td>$(P - E)_{\text{ocean}}$</td>
<td>-35.4</td>
<td>-29.8</td>
<td>-7.3</td>
<td>-40</td>
<td>-45.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ERA Interim</th>
<th>MERRA</th>
<th>CFSR</th>
<th>Trenberth, 2007</th>
<th>Oki, 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{\nabla} \cdot \vec{Q}_{\text{land}}$</td>
<td>31.8</td>
<td>41.0</td>
<td>33.4</td>
<td>40</td>
<td>45.5</td>
</tr>
<tr>
<td>$\vec{\nabla} \cdot \vec{Q}_{\text{ocean}}$</td>
<td>-31.3</td>
<td>-41.4</td>
<td>-33.4</td>
<td>-40</td>
<td>-45.5</td>
</tr>
</tbody>
</table>

Time-evolution of the water budgets

Atmospheric moisture fluxes (grey) vs. terrestrial water budgets (black)
Latter results showed large differences in the reanalyses’ terrestrial water budgets (i.e. $P - E$)!
Evaluation of GRACE using atmospheric data

Latter results showed large differences in the reanalyses’ terrestrial water budgets (i.e. \(P - E \))!

Approach: Use atmospheric moisture fluxes to overcome the uncertainties in \(P \) and \(E \).
Evaluation of GRACE using atmospheric data

Latter results showed large differences in the reanalyses’ terrestrial water budgets (i.e. $P - E$!)

Approach: Use atmospheric moisture fluxes to overcome the uncertainties in P and E.

Atmospheric-terrestrial water balance:

$$\frac{d W}{d t} = E - P - \vec{\nabla} \cdot \vec{Q}$$

Over longer time-scales, $\frac{d W}{d t} \approx 0$

$$\Rightarrow \quad \vec{\nabla} \cdot \vec{Q} = E - P$$

$$\Rightarrow \quad \frac{d S}{d t} = -\vec{\nabla} \cdot \vec{Q} - R = \frac{d M}{d t}$$
Evaluation of GRACE using atmospheric data

Amazon basin

[mm/month]

GRACE ERA Interim MERRA CFSR

2004 2005 2006 2007 2008 2009 2010

−200 −150 −100 −50 0 50 100 150 200
Evaluation of GRACE using atmospheric data

Mississippi

[mm/month]

2004 2005 2006 2007 2008 2009 2010

−100 −75 −50 −25 0 25 50 75 100
Evaluation of GRACE using atmospheric data

Ob basin

[mm/month]

2004 2005 2006 2007 2008 2009 2010

Christof Lorenz, email: christof.lorenz@kit.edu
Conclusion

- The analyzed atmospheric models allow comprehensive studies of especially tropospheric processes and dynamics.
- But we also have to take into account their shortcomings and uncertainties.
- Reanalyses are a reasonable compromise between models and observations.
- Ensemble estimates of atmospheric quantities are a reasonable basis for evaluating e.g. water storage changes from GRACE.
- The quality of the models has major impact on the reliability of especially satellite observations.
- Improvements in the models’ performance can be expected (assimilation schemes, number and quality of observations, ...).
Conclusion

- The analyzed atmospheric models allow comprehensive studies of especially tropospheric processes and dynamics

- But we also have to take into account their shortcomings and uncertainties

- Reanalyses are a reasonable compromise between models and observations

- Ensemble estimates of atmospheric quantities are a reasonable basis for evaluating e.g. water storage changes from GRACE

- The quality of the models has major impact on the reliability of especially satellite observations

- Improvements in the models’ performance can be expected (assimilation schemes, number and quality of observations, ...)
Conclusion

- The analyzed atmospheric models allow comprehensive studies of especially tropospheric processes and dynamics.
- But we also have to take into account their shortcomings and uncertainties.
- Reanalyses are a reasonable compromise between models and observations.
- Ensemble estimates of atmospheric quantities are a reasonable basis for evaluating e.g. water storage changes from GRACE.
- The quality of the models has major impact on the reliability of especially satellite observations.
- Improvements in the models’ performance can be expected (assimilation schemes, number and quality of observations, ...).
The analyzed atmospheric models allow comprehensive studies of especially tropospheric processes and dynamics.

But we also have to take into account their shortcomings and uncertainties.

Reanalyses are a reasonable compromise between models and observations.

Ensemble estimates of atmospheric quantities are a reasonable basis for evaluating e.g. water storage changes from GRACE.

The quality of the models has major impact on the reliability of especially satellite observations.

Improvements in the models’ performance can be expected (assimilation schemes, number and quality of observations, ...).
Conclusion

- The analyzed atmospheric models allow comprehensive studies of especially tropospheric processes and dynamics

- But we also have to take into account their shortcomings and uncertainties

- Reanalyses are a reasonable compromise between models and observations

- Ensemble estimates of atmospheric quantities are a reasonable basis for evaluating e.g. water storage changes from GRACE

- The quality of the models has major impact on the reliability of especially satellite observations

- Improvements in the models’ performance can be expected (assimilation schemes, number and quality of observations, ...)
Conclusion

- The analyzed atmospheric models allow comprehensive studies of especially tropospheric processes and dynamics.

- But we also have to take into account their shortcomings and uncertainties.

- Reanalyses are a reasonable compromise between models and observations.

- Ensemble estimates of atmospheric quantities are a reasonable basis for evaluating e.g. water storage changes from GRACE.

- The quality of the models has major impact on the reliability of especially satellite observations.

- Improvements in the models’ performance can be expected (assimilation schemes, number and quality of observations, ...).
Thank you for your attention.