Hochgenaue regionale Geoidbestimmung durch die Kombination von terrestrischen und Satellitendaten

Christian Pock1, Torsten Mayer-Gürr1, Daniel Rieser1, Norbert Kühtreiber2

1) Institute of Theoretical Geodesy and Satellite Geodesy

2) Institute of Navigation

Graz University of Technology

Geodätische Woche 2014
Berlin, Deutschland
Introduction

- Current Austrian geoid initiative “Geoid for Austria - Regional gravity FIELD improved” (GARFIELD) - P25222-N29

- Combination of global gravity field models with terrestrial observations

- Discussed today:
 - *Effect of height differences between Digital Terrain Model (DTM) and gravity stations*
 - *Useful gravity observation groups for Variance Component Estimation*

What is the magnitude of these effects for the geoid computation?
Used Input Data Set (1)

- **Digital Terrain Model:** 176x196m
Used Input Data Set (2)

- **Measured gravity**: 71261 points
Measured gravity: 71261 points

- Digital Terrain Model: 176x196m

Differences max. ± 50m
Options for Investigation

• Where are the height differences coming from?
 - DTM heights or gravity station heights?

• How to correct?
 - 1st Do nothing
 - 2nd Fit DTM to station heights
 - 3rd Fit station heights to DTM
Options for Investigation

- **Where are the height differences coming from?**
 - DTM heights or station heights?

- **How to correct?**
 - 1st Do nothing
 - 2nd Fit DTM to station heights
 - 3rd Fit station heights to DTM

- **Changes in gravity reduction?**
- **Relative geoid changes?**
- **Absolute GPS/leveling validation?**

<table>
<thead>
<tr>
<th>Description input data set</th>
<th>Austrian gravity height quality [BEV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order leveling</td>
<td>< 0.5 cm</td>
</tr>
<tr>
<td>2nd order leveling</td>
<td>< 2 cm</td>
</tr>
<tr>
<td>Triangulation</td>
<td>< 20 cm</td>
</tr>
<tr>
<td>Elevation number</td>
<td>< 200 cm</td>
</tr>
</tbody>
</table>
Gravity Station Height vs. DTM (1)

- Deviations between station height and DTM
 - Searching for nearest DTM point
Gravity Station Height vs. DTM (2)

- Deviations between station height and DTM
 - Searching for nearest DTM point
 - Compute difference between gravity station height and DTM
• Deviations between station height and DTM
 - Searching for nearest DTM point
 - Compute difference between gravity station height and DTM
 - Apply difference to DTM (only one single prism)
• **Remove-Compute-Restore** Technique

• Terrestrial input data
 - 71261 gravity measurements
 - 192 GPS/leveling observations (validation)

• Global gravity field model
 - GOCO03s [Mayer-Gürr T., et al. (2012)]

• Topographic reduction: **Prism formula**
 - DTM 176x196m
 - Standard crustal density of 2.670 kg/m³

• Computation: **Least squares approach**
 - Radial Basis Function parametrization
Remove – Let Heights Unchanged

<table>
<thead>
<tr>
<th>[mgal]</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-46.64</td>
<td>39.98</td>
<td>-1.28</td>
<td>11.64</td>
</tr>
</tbody>
</table>

![Map of Austria with color gradient scale from -45 to 45 mgal]
Remove – Fit DTM to Station Heights

<table>
<thead>
<tr>
<th>[mgal]</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-47.17</td>
<td>38.85</td>
<td>-1.88</td>
<td>11.65</td>
</tr>
</tbody>
</table>
Remove – Changes in Reduction Step

<table>
<thead>
<tr>
<th>[mgal]</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-3.55</td>
<td>4.36</td>
<td>0.60</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Differences caused by DTM changes
Restore – Relative Geoid Changes

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-9.23</td>
<td>7.82</td>
<td>2.44</td>
<td>3.72</td>
</tr>
</tbody>
</table>

Geoid differences on 4x4 km grid
Restore – Absolute Validation (1)

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-13.37</td>
<td>16.10</td>
<td>5.36</td>
</tr>
</tbody>
</table>

Fit DTM to station heights
Restore – Absolute Validation (2)

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-12.01</td>
<td>8.80</td>
<td>3.90</td>
</tr>
</tbody>
</table>

Unchanged DTM leads to a better result!
Unchanged DTM leads to a **better result**!

But a-posteriori σ_{AUT} is **increasing** from 0.80 to 1.03 [mgal]
Building Observation Groups

• Situation
 - Only few absolute measurements
 - Huge amount of relative gravity
 - Data quality from neighbouring countries?

<table>
<thead>
<tr>
<th>Measurement system & year</th>
<th>Austrian gravity quality [BEV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute gravity</td>
<td>< 0.01 [mgal]</td>
</tr>
<tr>
<td>Relative gravity</td>
<td></td>
</tr>
<tr>
<td>LCR-D</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>LCR-G</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>LCR</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>Scintrex CG3</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>Worden 500</td>
<td>< 0.10 [mgal]</td>
</tr>
<tr>
<td>Norgaard</td>
<td>< 0.30 [mgal]</td>
</tr>
</tbody>
</table>

FG-5
Scintrex
LaCoste & Romberg
• Situation

- Only few absolute measurements
- Huge amount of relative gravity
- Data quality from neighbouring countries?

<table>
<thead>
<tr>
<th>Measurement system & year</th>
<th>Austrian gravity quality [BEV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute gravity</td>
<td>< 0.01 [mgal]</td>
</tr>
<tr>
<td>Relative gravity</td>
<td></td>
</tr>
<tr>
<td>LCR-D</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>LCR-G</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>LCR</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>Scintrex CG3</td>
<td>< 0.02 [mgal]</td>
</tr>
<tr>
<td>Worden 500</td>
<td>< 0.10 [mgal]</td>
</tr>
<tr>
<td>Norgaard</td>
<td>< 0.30 [mgal]</td>
</tr>
</tbody>
</table>
Building Observation Groups (1)

- Observation groups for Variance Component Estimation
 - 35595 LCR+Scintrex, 9339 Worden, 3816 Norgaard
 - 22770 from neighbouring countries
Restore – Relative Geoid Changes

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.45</td>
<td>0.94</td>
<td>-0.24</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Difference compared to “do nothing” solution!
Restore – Absolute Validation (3)

Improvements due to 4 observation groups!

<table>
<thead>
<tr>
<th>VCE [mgal]</th>
<th>σ_{LR}</th>
<th>σ_{Wor}</th>
<th>σ_{Nor}</th>
<th>$\sigma_{N_{eigh}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.10</td>
<td>0.81</td>
<td>0.85</td>
<td>0.74</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-12.53</td>
<td>8.27</td>
<td>3.70</td>
</tr>
</tbody>
</table>
Building Observation Groups (2)

- Observation groups for Variance Component Estimation
 - 35595 LCR+Scintrex, 9339 Worden, 3816 Norgaard
 - 22770 from neighbouring countries – possible refinements?
Building Observation Groups (3)

- Observation groups for Variance Component Estimation
 - 35595 LCR+Scintrex, 9339 Worden, 3816 Norgaard
 - 22770 allocated for each neighbouring country
Minor improvements due to 10 observation groups!

VC\(E\) [m\(g\)al]

\(\sigma_{LCE} = 1.10\)
\(\sigma_{Wer} = 0.81\)
\(\sigma_{Nor} = 0.85\)
\(\sigma_{GER} = 1.06\)
\(\sigma_{SUI} = 1.12\)
\(\sigma_{ITA} = 1.04\)
\(\sigma_{SLO} = 0.98\)
\(\sigma_{HUN} = 0.18\)
\(\sigma_{SVK} = 0.55\)
\(\sigma_{CZE} = 1.87\)
Building Observation Groups (4)

- Observation groups for Variance Component Estimation
 - 35595 LCR+Scintrex, 9339 Worden, 3816 Norgaard – possible refinements?
 - 22770 allocated for each neighbouring country
Building Observation Groups (5)

- Observation groups for Variance Component Estimation
 - LCR+Scintrex, Worden, Norgaard and corresponding measurement epochs
 - 22770 allocated for each neighbouring country

17 observation groups
Institute of Theoretical Geodesy and Satellite Geodesy

Geodätische Woche 2014

Restore – Absolute Validation (5)

17 observation groups by introducing epochs! Best result!

V CE [mgal]

σ₁ = 0.86

σ₁₇ = 1.87

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11.35</td>
<td>11.38</td>
<td>3.53</td>
<td></td>
</tr>
</tbody>
</table>
Summary

• **Fit Digital Terrain Model to station heights**
 - Let heights to remain unchanged
 - Fit of DTM to station heights is not advisable

• **Individual weighting for Variance Component Estimation**
 - Solution is slightly improved due to different weighting schemes
 - 1 group Austria / 1 Neighbouring
 - 3 groups Austria / 1 Neighbouring
 - 3 groups Austria / 7 Neighbouring
 - 10 groups Austria / 7 Neighbouring

• **Absolute geoid validation**
 - Truth is not known - maybe still uncertainty in GPS/leveling observations?
 - The achieved results are close to the absolute error budget of < 3 cm
Hochgenaue regionale Geoidbestimmung durch die Kombination von terrestrischen und Satellitendaten

Christian Pock ¹, Torsten Mayer-Gürr ¹, Daniel Rieser ¹, Norbert Kühtreiber ²

1) Institute of Theoretical Geodesy and Satellite Geodesy
2) Institute of Navigation

Graz University of Technology

Geodätische Woche 2014
Berlin, Deutschland
Absolute Validation – Truth?

<table>
<thead>
<tr>
<th>[cm]</th>
<th>min</th>
<th>max</th>
<th>mean</th>
<th>rms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-7.70</td>
<td>6.60</td>
<td>0.32</td>
<td>1.52</td>
</tr>
</tbody>
</table>

Differences of 166 GPS/leveling observations period 2006-2010