Ocean circulation generated magnetic signals and their application in data assimilation methods

Christopher Irrgang1, Jan Saynisch1, Jan M. Hagedoorn2, Maik Thomas1

(1) Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences

(2) Technische Universität, Berlin

Geodätische Woche 2014, Berlin
October 9, 2014
Motivation

- The ocean is a very complex system

- Dynamics on many temporal and spatial scales (periodic and non-periodic), e.g.:
 - Tides
 - Seasonal cycles
 - Global circulation
 - Tsunamis
 - Eddies

- Even a 'perfect' model does not necessarily produce realistic model results
Motivation

- The ocean is a very complex system
- Dynamics on many temporal and spatial scales (periodic and non-periodic), e.g.:
 - Tides
 - Seasonal cycles
 - Global circulation
 - Tsunamis
 - Eddies
- Even a 'perfect' model does not necessarily produce realistic model results
- Using **data assimilation methods** and real world data, the modelling of unknown model variables can be improved
- Modern satellites (e.g. SWARM) indirectly measure global ocean flow via **induced magnetic signals** with unprecedented precision
Motivation – Motional Induction

- Conducting sea water moves in the ambient geomagnetic field of the Earth
- Electrically charged ions in the salt water are deflected by the Lorentz’ force
- Spatial charge accumulations lead to induction of electric and magnetic fields ("motional induction")
Motivation – Motional Induction

- Conducting sea water moves in the ambient geomagnetic field of the Earth
- Electrically charged ions in the salt water are deflected by the Lorentz' force
- Spatial charge accumulations lead to induction of electric and magnetic fields ("motional induction")

- Significant contribution to the magnetic field (several nano Teslas) that can be measured by satellites (e.g. CHAMP, SWARM)

- Oceanic contributions are mostly of unknown order, precision and origin

- Motionally induced magnetic field data as additional information for modelling global ocean dynamics
Expected results and perspectives

- Range of oceanic magnetic signals induced by global ocean circulation (strength, location and variability)

- Uncertainty of oceanic magnetic signals (forcing, conductivity distribution, covariances)

- Robust spatio-temporal patterns and correlations, i.e., features with small errors that are insensitive to uncertain assumptions
Expected results and perspectives

- Range of oceanic magnetic signals (strength, location and variability)
- Uncertainty of oceanic magnetic signals (forcing, conductivity distribution, covariances)
- Robust spatio-temporal patterns and correlations, i.e., features with small errors that are insensitve to uncertain assumptions

Implemented the modelling of oceanic induction in the Ocean Model for Circulation and Tides (OMCT)
Motionally induced Magnetic Field

Mean values of the induced magnetic field due to global ocean circulation at **sea level** (2001)
Motionally induced Magnetic Field

Mean induced magnetic field, superimposed by mean ocean velocities (arrows) and ambient geomagnetic field (contour)
Motionally induced Magnetic Field

Mean induced magnetic field, superimposed by mean ocean velocities (arrows) and ambient geomagnetic field (contour)
Motionally induced Magnetic Field

Mean induced magnetic field, superimposed by mean ocean velocities (arrows) and ambient geomagnetic field (contour)
Motionally induced Magnetic Field

Mean induced magnetic field, superimposed by mean ocean velocities (arrows) and ambient geomagnetic field (contour)

Induction is strongest where ocean flow velocities are orthogonal to the isocontours of the ambient geomagnetic field
Motionally induced Magnetic Field

Mean values of the induced magnetic field due to global ocean circulation at **sea level** (2001)

Mean values of the induced magnetic field due to global ocean circulation at **450 km satellite altitude** (2001)

- Weaker signal strength at satellite altitude due to harmonic field continuation
- Small scale patterns and details are blurred
- Large scale patterns are preserved
Motionally induced Magnetic Field

Variability (standard deviation) of the induced magnetic field due to global ocean circulation at **sea level** (2001)
Motionally induced Magnetic Field

Variability (standard deviation) of the induced magnetic field due to global ocean circulation at **sea level** (2001)

<table>
<thead>
<tr>
<th>Sea level</th>
<th>Signal range</th>
<th>Standard Deviation</th>
<th>Peak to Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea level</td>
<td>-6 to 4 nT</td>
<td>≤ 0.6 nT</td>
<td>≤ 4 nT</td>
</tr>
<tr>
<td>Satellite altitude (450 km)</td>
<td>-2 to 2 nT</td>
<td>≤ 0.2 nT</td>
<td>≤ 1.5 nT</td>
</tr>
</tbody>
</table>

Variability (peak to peak) of the induced magnetic field due to global ocean circulation at **sea level** (2001)
Expected results and perspectives

- Range of oceanic magnetic signals (strength, location and variability)
- Uncertainty of oceanic magnetic signals (forcing, conductivity distribution, covariances)
- Robust spatio-temporal patterns and correlations, i.e., features with small errors that are insensitive to uncertain assumptions

Implemented the modelling of oceanic induction in the Ocean Model for Circulation and Tides (OMCT)
Expected results and perspectives

- Range of oceanic magnetic signals (strength, location and variability)

- Uncertainty of oceanic magnetic signals (forcing, conductivity distribution, covariances)

- Robust spatio-temporal patterns and correlations, i.e., features with small errors that are insensitive to uncertain assumptions

Combine found ocean dominated patterns with derived error information

Identify separable ocean signals in observation data provided by satellite measurements

Long term goal: inversion/assimilation of observation to improve global ocean modelling and simulations
Thank you for your attention!