Aktuelle Ergebnisse der Entwicklung des Quantengravimeters GAIN im Vergleich mit Supraleitgravimetern und FG5X-220

M. Schilling C. Freier V. Schkolnik M. Hauth H. Wziontek H.-G. Scherneck A. Peters and J. Müller

schilling@ife.uni-hannover.de
Motivation

- Absolut Gravimetry is dominated by laser interferometers with falling corner cubes

- In recent years a number of Atom Interferometer (AI) gravimeters were developed
 - μQuans: commercial quantum gravimeter
 - LNE Syrte: Cold Atom Gravimeter
 - IQ LUH: in development (QUANTUS conversion)
Motivation

- Absolut Gravimetry is dominated by laser interferometers with falling corner cubes

- In recent years a number of Atom Interferometer (AI) gravimeters were developed
 - μQuans: commercial quantum gravimeter
 - LNE Syrte: Cold Atom Gravimeter
 - IQ LUH: in development (QUANTUS conversion)

- HU Berlin: Gravimetric Atom Interferometer (GAIN)
 - Characterization by comparison with SG and AG
Agenda

- Motivation
- Atom interferometry
- Review Wettzell 2013
- Comparison Onsala 2015
- Summary and Conclusion
Atom interferometry

\[P_{F=2} = \frac{1}{2} \left[1 - \cos(\Delta \Phi) \right] \]

\[\Delta \Phi = k_{eff} gT^2 \]
Atom interferometry

g-experiment sequence

1. Magneto-Optical-Trap → preparation of atoms
2. State selection
3. Light – atom interaction
4. Detection of state populations
5. Tip/tilt mirror → verticality and Coriolis
6. Vibration isolation
November 2013

Two weeks of measurements

In parallel to SG-30

Determination of scale factor with 4×10^{-4} uncertainty

Calibration with FG5: 1×10^{-3} [Francis and van Dam., (2002)]

Difference to g_{ref}: $86 \pm 98 \text{ nm s}^{-2}$

Error budget dominated by magnetic effect

Hysteresis of vibration isolation revealed
Comparison Onsala 2015

Four week campaign in February
- OSG-054 and GAIN: precision
 → almost 4 weeks of recordings
- FG5X-220 and GAIN: absolute accuracy
 → switch of positions after 4 days
Comparison Onsala 2015

Four week campaign in February
- OSG-054 and GAIN: precision
 → almost 4 weeks of recordings
- FG5X-220 and GAIN: absolute accuracy
 → switch of positions after 4 days

Improvements of GAIN after Wettzell
- Magnetic shielding of MOT
 → quicker setup of instrument
 → removal of systematic effect
- Readjustment of vibration isolation
- Post-correction for residual vertical mirror movement
 [Le Gouët et al., (2008)]
Figure: Difference of GAIN and OSG-054 from 30 minute averages.
Comparison Onsala 2015 vs. Wettzell 2013

Figure: Difference GAIN – SG (RMS: 3 nm s⁻²/11 nm s⁻²).
Comparison Onsala 2015 vs. Wettzell 2013

Figure: Allan deviation of GAIN – SG.
Figure: Pillar AC ($\sigma = 5 \text{ nm s}^{-2}$) and AA ($\sigma = 9 \text{ nm s}^{-2}$) with the mean gravity of each pillar subtracted.
Comparison Onsala 2015: FG5X-220 and GAIN

Figure: RMS of Seismometer vs. Absolute Gravimeter (FG5X-220 from 4.2.-12.2. and GAIN from 7.2.-12.2).
Summary and Conclusion

Results GAIN

- Continuous operation with minor down time
- Improvement of sensitivity $< 1 \times 10^{-10} \, g$
- Difference to FG5X-220 $56 \pm 58 \, \text{nm s}^{-2}$
- Error budget dominated by wavefront aberration [Schkolnik et al. (2015)]
- Confirmation of SG scale factor with uncertainty 2.6×10^{-4}
Summary and Conclusion

Results FG5X-220

- Measurements under unfavorable conditions due to microseismic activity

- Results fit to land-uplift determined with previous FG5 Measurements [Timmen et al. (2015)]

- Currently no indication for orientation dependent instrumental effect → improvement over FG5-220 [Gitlein, (2009)]
Summary and Conclusion

Next Steps

- Comparison with SG essential for characterization of AI sensitivity and identification of instrumental effects
- Reduction of systematic effect
- Participation international comparison of absolute gravimeters
Thank you for your attention

This work was in part supported by the German Research Foundation (MU 1141/16-1)
Literature I

▸ Francis, O., van Dam, T.:
Evaluation of the precision of using absolute gravimeters to calibrate superconducting gravimeters.

▸ Francis, O., Baumann, H., participants of ICAG-2013:
DRAFT A: CCM.G-K2 Key Comparison and Pilot Study
unpublished, work in progress, (2014)

▸ Gitlein, Olga:
Absolutgravimetrische Bestimmung der Fennoskandischen Landhebung mit dem FG5-220.
Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik Nr. 281, (2009)

▸ Le Gouët, J., Mehlstäubler, T.E., Kim, J., Merlet, S., Clairon, A., Landragin, A., Pereira Dos Santos, F.:
Limits to the sensitivity of a low noise compact atomic gravimeter.

▸ Niebauer, T. M., Sasagawa, G. S., Faller, J. E., Hilt, R., Klopping, F.:
A new generation of absolute gravimeters

▸ Schkolnik, V., Leykauf, B., Hauth, M., Freier, C., Peters, A.:
The effect of wavefront aberrations in atom interferometry.

▸ Timmen, L., Engfeldt, A., Scherneck, H.-G.:
Observed secular gravity trend at Onsala station with the FG5 gravimeter from Hannover.
Microseismic activity due to weather conditions

Figure: Time derivation of 1 Hz SG data.